MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




ψ     [ / ]   / [ ]

  ) [

,] / [    ]     .




ψ        / [ ]

  ) [

ψ

] ]    .




   / [

  ) []

ψ

] ]  .



 ψ   / [ ]

 ] 
ψ

] /    .



ψ  /     / [ ]  [

  ) [

ψ

] .   . 



ψ         [ ]

 ] 
ψ

]   .



 ψ        [ ]

 [ 
ψ

]]   .




ψ       / [ 

] ]    .






ψ   / [ ]

]
ψ

] /     .




*  ]


ψ

 / ] ]] .








    []/


ψ

]] .





ψ []

 ] 

ψ

]/ ]  .










  / [ ]

] ] 

ψ ]  .




ψ      [  ]

  ψ ] / ]    .






ψ     [

] /      []

     .






ψ  [[]  ) [

ψ
]










ψ     [ []

  ) [

,] /  ψ     .



   [ ] /   )

, ] / ψ   .


magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




A interação spin-órbita (mecânica quântica)

Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]

Assim, a função de onda total é escrita como uma função de produto.

 (P)








Na física quântica, a interação spin-órbita (também chamado efeito spin-órbita ou acoplamento spin-órbita) é qualquer interação de partículas de spin com seu movimento. O primeiro e mais conhecido exemplo disto é que a interação spin-órbita provoca mudanças nos níveis de energia atômica de elétrons devido a uma interação entre o momento de dipolo magnético do spin e o campo magnético interno do átomo gerado pela órbita do elétron em torno do núcleo. Isto é detectável como uma divisão de linhas espectrais. Um efeito similar, devido à relação entre o momento angular e da força nuclear forte, ocorre por prótons e nêutrons em movimento dentro do núcleo, levando a uma mudança nos seus níveis de energia no modelo de concha do núcleo. No campo da spintrônica, os efeitos spin-órbita de elétrons em semicondutores e outros materiais são explorados para aplicações tecnológicas.[1] A interação spin-órbita é uma das causas da anisotropia magnetocristalina.

Momentos angulares e momentos magnéticos (imagem semi-clássica)

Uma corrente numa espira tem associado a ela um momento magnético dado por:

 .

Nessa expressão  é a intensidade da corrente e  é o vetor área cuja direção é perpendicular ao plano da espira e o sentido é consistente com a regra do parafuso de rosca direita:

i = carga do electrão X número de vezes por segundo que o electrão passa num dado ponto = e.f onde f é a frequência de rotação do electrão.

Módulo do momento de dípolo magnético

Cuja direção é oposta a do momento angular orbital  porque o electrão possui carga negativa.

Agora

Portanto

 (Z)

Dado que o momento angular é quantizado, temos:

Na primeira órbita de Bohr, m = 1 e a equação (Z) torna-se

 (Y)

onde  é chamado magnetão de Bohr e o seu valor é dado por


Pode-se ver da Equação (Y) que  é anti-paralelo ao momento angular orbital.

rácio entre o momento magnético e o momento angular orbital é chamado o rácio giromagnético clássico,

 (X)

O momento angular de spin também possui um momento magnético a ele associado.

O seu rácio giromagnético é aproximadamente duas vezes o valor clássico para o momento orbital, isto é,

 (K)

Isso significa que o spin é duas vezes mais eficaz em produzir um momento magnético do que o momento angular.

Equações (X) e (K) são muitas vezes combinados, escrevendo

onde a grandeza g é chamada o fator de divisão espectroscópico. Para momentos angulares orbitais g = 1, para spin apenas g ≈ 2 (embora experimentalmente g = 2 004).

Para os Estados que são misturas de momento angular orbital e momento angular de spin, g não é inteiro .

Dado que

O momento magnético devido ao spin do electrão é:

Assim, a menor unidade de momento magnético para o electrão é o magnetão de Bohr, quer se combine momento angular orbital ou spin.



O momento magnético devido ao spin do electrão é:

Comentários

Postagens mais visitadas deste blog